We respect your right to privacy. You can choose not to allow some types of cookies. Your cookie preferences will apply across our website.
Summary statistics of data tables.
Mean, median, SD, and count are often data summaries we need to calculate, usually after grouping data based on another column. grafify has a simple function table_summary that gives these values for one (or more) quantitative parameters (columns) of a data table after grouping by one (or more columns).
This function uses the base R function aggregate.
table_summary(data = data_t_pratio, #data table
Ycol = "Cytokine", #quantitative variable
ByGroup = "Genotype") #grouping variable
#> Genotype Cytokine.Mean Cytokine.Median Cytokine.SD Cytokine.Count
#> 1 KO 5.913191 4.513057 6.325244 33
#> 2 WT 2.985028 2.130989 2.690373 33
This example uses two grouping variables.
table_summary(data = data_2w_Festing, #data table
Ycol = "GST", #quantitative variable
ByGroup = c("Strain",
"Treatment")) #grouping variables
#> Strain Treatment GST.Mean GST.Median GST.SD GST.Count
#> 1 129/Ola Control 526.5 526.5 112.42998 2
#> 2 A/J Control 508.5 508.5 142.12846 2
#> 3 BALB/C Control 504.5 504.5 115.25841 2
#> 4 NIH Control 604.0 604.0 226.27417 2
#> 5 129/Ola Treated 742.5 742.5 33.23402 2
#> 6 A/J Treated 929.0 929.0 103.23759 2
#> 7 BALB/C Treated 703.5 703.5 111.01576 2
#> 8 NIH Treated 722.5 722.5 153.44217 2
This example uses mtcars data.
table_summary(data = mtcars, #data table
Ycol = c("mpg",
"disp"), #quantitative variables
ByGroup = c("gear", #grouping variables
"am"))
#> gear am mpg.Mean mpg.Median mpg.SD mpg.Count disp.Mean
#> 1 3 0 16.10667 15.50 3.371618 15 326.3000
#> 2 4 0 21.05000 21.00 3.069745 4 155.6750
#> 3 4 1 26.27500 25.05 5.414465 8 106.6875
#> 4 5 1 21.38000 19.70 6.658979 5 202.4800
#> disp.Median disp.SD disp.Count
#> 1 318.00 94.85274 15
#> 2 157.15 13.97888 4
#> 3 93.50 37.16298 8
#> 4 145.00 115.49064 5